A SMALL EXAMPLE FOR THE USE OF "STOCHPLOT9" FOR MAPLE 9 CALLING SEQUENCE: stochplot(s,t,p,z) stochplot plots a numerical solution using one of the schemes from the stochastic package for 1d SDEs INPUT: s: numerical scheme (as provided by the output of the "Euler", "Milstein" etc. Routines from the stochastic Package)h: time-step p: number of steps to compute z: initial value restart;read stochastic9;read stochplot9;with(stochastic);Construction of the Numerical Scheme...Euler([-(a*sin(x)+2*b*sin(2*x))],[[sigma]]);Euler([-(1*sin(x)+2*2*sin(2*x))],[[0.5]]); ...and output of a point-trajectory using "stochplot" stochplot(Euler([-(1*sin(x)+2*2*sin(2*x))],[[0.5]]), 0.1, 10, 1); Smaller time step and more steps stochplot(Euler([-(1*sin(x)+2*2*sin(2*x))],[[0.5]]), 0.01, 100, 1);Same times but different initial valuestochplot(Euler([-(1*sin(x)+2*2*sin(2*x))],[[0.5]]), 0.01, 100, 10);Other schemes can be used the same way:milcomm([-(1*sin(x)+2*2*sin(2*x))],[[0.5]]);stochplot(milcomm([-(1*sin(x)+2*2*sin(2*x))],[[0.5]]), 0.01, 100, 1); For time dependent SDEs you can use "stochplot_time":CALLING SEQUENCE: stochplot_time(x,t,p,z) stochplot_time plots a numerical solution using one of the schemes from the stochastic package for 1d SDEs which may betime dependent, where time in the SDE should be written as "t" INPUT: s: numerical scheme (as provided by the output of the "Euler", "Milstein" etc. Routines from the stochastic Package)h: time-step p: number of steps to compute z: initial valuet0: initial time An Example: stochplot_time(Euler([-(t*sin(x)+2*2*sin(2*x))],[[0.5]]), 0.01, 100, 10, 1);