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What am i talking about?

THE CONCEPT OF INVARIANCE ENTROPY

SETTING

Consider a continuous-time control system
x(t) = F(x(t),u(t)), uel,

on a Riemannian manifold M such that F : M x R™ — TM is continuous
and continuously differentiable in the first argument. Then there are
unique solutions ¢(t, x, u) for all x € M and u € U and

©r.u(x) = @(t, x, u) is continuously differentiable. Let @ C M be a
compact and controlled invariant set:

VxeQ: Juel: p(t,x,u) € Q for all t > 0.
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SETTING

Consider a continuous-time control system
x(t) = F(x(t),u(t)), uel,

on a Riemannian manifold M such that F : M x R™ — TM is continuous
and continuously differentiable in the first argument. Then there are
unique solutions ¢(t, x, u) for all x € M and u € U and

©r.u(x) = @(t, x, u) is continuously differentiable. Let @ C M be a
compact and controlled invariant set:

VxeQ: Juel: p(t,x,u) € Q for all t > 0.

QUESTION:

How fast does the number of open-loop control functions, which are
needed to stay in @ up to time 7, grow when 7 goes to infinity?
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THE CONCEPT OF INVARIANCE ENTROPY

DEFINITION (FRITZ)

A set S C U is called (7, Q)-spanning if
VxeQ: JueS: p(t,x,u) € Q forall t €[0,7].

Let riny(7, Q) denote the minimal cardinality of such a set and define the
(strict) invariance entropy by

hinv(Q) = lim % In rinv(Ta Q)
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REMARKS

@ Specifying a compact set K C Q of initial conditions, one obtains an
invariance entropy hin (K, Q) depending on K and Q.

© Requiring that trajectories only stay in an e-neighborhood of @, one
obtains another version of invariance entropy.

Q hinv(Q) < oo if and only if rny (7, Q) < co for one or, equivalently,
for all 7 > 0.

Q hinv(Q) is an invariant with respect to state transformations.

@ hinv(Q) equals the infimal data rate in a feedback loop necessary to
render the set @ invariant by a causal coding and control law.



Examples

EXAMPLE [

Consider a linear control system
x(t) = Ax(t) + Bu(t), vel,

with compact control range. Assume that @ is a compact controlled
invariant set with positive Lebesgue measure. Then

hinv(Q) = Z max{0, Re \},

A€spec(A)

where every eigenvalue is counted with its multiplicity.



Examples

ExAMPLE II

Consider a control-affine system of the form
x=1f(x)+u(t)g(x), uel,

on R with u(t) € [a, b], a < b. Let D be a bounded control set with
nonvoid interior and assume that the system is locally accessible on cl D.
Then for Q =clD and K C D

hinv(K, Q) = max{0,inf X1, (Q)}

o fo g [0~ o]}



Estimating invariance entropy from below

LOWER BOUNDS: THE BASIC IDEA

Let m be an outer measure on M such that 0 < m(Q) < co. Define

Q(u,7) :={xeQ : ¢(0,7],x,u) C Q}, vuel, T>0.
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Let S C U be a minimal (7, @)-spanning set. Then
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m(Q) < #35 - sup m(Q(u, 7)) = riny(7, Q) - sup m(Q(u, 7)).
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LOWER BOUNDS: THE BASIC IDEA

Let m be an outer measure on M such that 0 < m(Q) < co. Define
Q(u,7) :={xeQ : ¢(0,7],x,u) C Q}, vuel, T>0.

Let S C U be a minimal (7, @)-spanning set. Then
Q=J Q") = mQ) <> mQur)).
uesS ueSsS

This implies

m(Q) < #35 - sup m(Q(u, 7)) = riny(7, Q) - sup m(Q(u, 7)).

u

Therefore,

hinv(Q) > — lim sup 1 Insup m(Q(u, 7)).

T—oo T u
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REDUCTION OF THE PROBLEM

How to estimate m(Q(u,7))?

IDEA (FROM THE THEORY OF ESCAPE RATES):

Introduce the Bowen-metrics on M:

d ( 7y) = max d( (t,x7u),g0(t,y,u)).
tel0,7]

Cover the set Q(u, ) with a minimal collection of Bowen-balls:

Q(u,T) C U BX7(x), &> 0 (fixed)

XESu,r,e

This implies

(u,7) <Z (BYT(x)) < #Syre- sup m(BL7T(x)).
x€Q(u,T)
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QUESTION

How to estimate m(BY"(x))?

KATRIN GELFERT’S LEMMA (SIMPLIFIED VERSION):

Consider a dynamical system of class C! on a Riemannian manifold:
p:TxM— M, (tp)— ¢ (p).
Let K be a compact set and E C TxM a subbundle such that

plgf( |det dp'|g,| > 1 for some t > 0.

Then there is £(t) > 0 such that for all p € K and ¢ € (0,€]:

1+ (BE(p),dim M, ) < const - e%™ M |det dpnpt|EP‘_1 ,

where pp(-,dim M, €) denotes outer Hausdorff measure.
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SUMMARY

finv (7, Q) > m(Q)

= maxyes m(Q(u,7))

m(Q(u; 7)) <X ses, .. MBS (x))

m(B7(x)) < o

= |det depr,uley |
for m= py(-,dim M, ).

(Nonautonomous version of Katrin
Gelfert's Lemma)




Estimating invariance entropy from below

THE MAIN RESULT

Define
Q:={(u,x)eUxM : o(Rf,x,u) C Q}.

1 . i
hesc(Q) := limsup — In [limsup sup i M#SumE
T—o0 T eN\0 uvemyQ
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THE MAIN RESULT

DEFINITION

Define

Q:={(u,x)eUxM : o(Rf,x,u) C Q}.

1 . i
hesc(Q) := limsup — In [limsup sup i ’V’;éaéSL,mE
T—00 T eN\0 uvemyQ

<

Let E — Q be a subbundle of the vector bundle

U {u}x M = Q, (u,ve T M) (u,x),
(u,x)€Q

with inf,. (, eo|detdipr ulE,, | > 1 forall 7> 79 and u € myQ. Then

. 1
hiny(Q) > limsup — inf In|det dior ulE,, | — hesc(@).

T—00 T (U,X €Q
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(GENERALIZED LIOUVILLE FORMULA

PROPOSITION

Assume that the subbundle E in the theorem is equivariant. Then

In | det dyorule, . | = / tr [V Fae)(©,0(x)) © Q(Ost, 050(x))] &,
0

partial divergence of Fy)

where Q(u, x) : TM — E,  is the orthogonal projection.
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THE “ESCAPE ENTROPY” hesc(Q)

Under mild assumptions, |hesc(Q)| < co. In some cases we can show that
hese (@) <0,

and hence we can omit it in the estimate for invariance entropy:
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THE “ESCAPE ENTROPY” hesc(Q)

Under mild assumptions, |hesc(Q)| < co. In some cases we can show that
hese (@) <0,

and hence we can omit it in the estimate for invariance entropy:

@ Uniformly expanding systems: On Q@ it holds that
d(p(t, x,u), o(t,y,u)) > ce’d(x,y), t>0 (c,A>0).

@ Inhomogeneous bilinear systems (under mild conditions):

).(Z

x+ Bv(t), (u,v)elUxV.

Ao + Z u;(t)A,-
i=1

@ (?) Bilinear systems on flag manifolds F(dy, ..., dk), @ = closure of
a control set (joint work with Luiz San Martin).



Applications

REMARK

From our theorem we can recover the formula for linear systems: If
x(t) = Ax(t) + Bu(t), vel,
we can define an equivariant subbundle £ — Q by setting
E.x :=E"(A) (the unstable subspace)

Applying our theorem we obtain

1 T
hinv(@Q) > limsup = inf / tr Alg+(a) ds — hesc(Q).
0

r—o0o0 T (u,x)EQ

Since hesc(Q) < 0 in this case, we obtain

hinv (Q) > tr Alg+(a)= Z max {0, Re A} .
A€Espec(A)



Happy Birthday, Fritz!
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